
PMM u.S.s.R.,Vo1.47,No.4,pp.527-532,1983 
Printed in Great Britain 

0021-8928/83 $lO.OO+O.OO 
01984 Pergamon Press Ltd. 
UDC 539.3 

PLANE PROBLEMS OF THE STATIC LOVING OF 
A PIECEWISE HOMOGENEOUS LINEARLY ELASTIC MEDIUM* 

A.N. LIN'KOV 

Integral equations are obtained for the plane problem of the static loading 
of a system of linearly elastic blocks interacting arbitrarily on Contiguous 
boundaries. The derivation is based on an assumed special form of the 
Boundary Integral Equations (BIE) for one block. Problems On inclusions, 
systems of rigidly connected elastic blocks, blocks under mixed conditions 

on the outer boundary, and isolated, intersecting, tapering and growing 
cracks are included as special oases. 

A number of problems of fracture theory, the mechanics of composite materials and mining 
geomechanics require the examination of problem of systems of elements (grains, Composite 
components, mountain rock blocks and layers) that are contiguous and interact along sections 
of their boundaries. The component elements themselves .(blocks) axe often deformed elastically, 
while complex irreversible processes occur on the surfaces in oontact. A similar situation 

occurs, say, during mutual movements of the grains, blocks, and layers, during crack formation 
on the boundaries of inclusions, during crack growth under compression conditions, etc. Direct 
application of existing BIE /lf for elastic elements is far from optimal from the calculation 
point of view since the systems obtained turn out to be quite awkward and contain an excessive 
number of unknowns. Special forms of the BIE, enabling one to use the feature of contact 
problems that the forces on contiguous boundaries remain continuous and depend only on the 
difference in the displacements are more effective. This method, developed in the present 

paper, ensures that the final equations are compact almost halves the number of unknown quant- 
ities. 

1. The plane problem of a system of p elastic elements (blocks or inclusions in an 
elastic matrix) bounded by contours Lj (j = %,...,p) is considered. On the outer boundary we 
are given the loads or displacements , and we are given the relations governing the interaction 
on the contact sections. It is required to find the stresses and displacements in the elements 
and on their boundaries. 

It is first necessary to agree on notation. The direction of traversal on the contours 
Lj is defined such that the j-th element is to the left. 
denoted by St- and the inner one by S;. 

The outer domain relative toL)is 
Each of the closed contours&is the sum of sections 

Lj, on which the j-th element is contiguous to a total number slof elements m. In the case 
of inclusions separated by the matrix, sj= 0. The direction of motion along Lj,is assumed to 
agree with the direction of traversal of L$. 

(-&In = -&I). 
Hence, L,,,, and L,,,, pass in opposite directions 

The notation introduced is related to the number of the elements, and each of the contig- 
uity sections is denoted twice (LI,,, and L,,). Later, a notation independent of the elements 
is also required for the set of contiguous sections and the outer boundaries. Hence, the 
outer boundary is denoted by N and it is considered that it passes so that 
the blocks remain on the left. This direction evidently agrees with the direction of motion 
over the sections of elements adjoining the outer boundary. The directions are fixed arbitr- 
arily on the common boundaries of the blocks and the set of such segments is denoted by M. 
The sum N + M corresponds to the common contour L. 

The contour Mseparates left and xight neighbourhoods at each of its points since the 
direction ris fixed thereon. The limit values to the left of any quantity on Mare marked 
with a plus, and on the right with a minus. The normal II is always considered to be directed 
to the right of the direction of motion.. 
the contours.&,,and L,,, 

Its direction is opposite at coincident points of 
and agrees with the normal to Lj,of L,,,jfor an arbitrary point of the 

Contour Mon the boundary of the elements j and m depending on whether the motion along Mat 
this point is in agreement with the direction of motion along L*,or L,+ 

The pair of unit vectors (n,~) gives the direction of the axes of the local Cartesian 
coordinate system at each point of the contour L. The general Cartesian system X& and the 

Prikl.Matem.Mekhan.,Vo1.47,No.4,pp.644-651,1Q83 

527 



528 

complex variable z =x + iy whose values are denoted by t or z on the contours, are aLso 
introduced. 

On the contact boundaries Mthe components a,,, Un7 of the force vector remain contlnu- 
ous on the axes of the local coordinate system, while the components of the disolacements ai. 
u, and *+,lk- experience the discontin&ies 
between a,,,, anr and the discontinuity vector 
of M 

a,,,, = A,, (Au,, AG, 

or between the increments of these quantities 

da,,,=-B,,d~u,$_B,,d&, 

AU,= h* -u,,< AZ+ = &+- ~1,~. The relation 'I ’ 
AU,,, A& is assumed to be given at each point 

an, =&(&,r Au3 il.11 

da, = B, diiu,, t B,ddu, (1.21 

The functions A,, A,t in Eqs.Cl.1) can be non-linear, andthe matrix with the coeffic- 
ients I&, &, B,, B, can be non-negative definite (for the chosen axes and signs of the 
displacement discontinuities, energy absorption for mutual displacements at the contacts cor- 
responds to negative definiteness). Moreover, the functions in (1.1) and the coefficients in 
(1.2) can be different at different points of M. 

Relations (1.1) and (1.2) are fairly general in order to include the considerable number 
of contact conditions that may be realized in practice. The first corresponds to deformation, 
and the second to incremental variants in the rheology of rough interacting surfaces /2/. 
There are no differences between these cases for the formal part of the last exposition and 
it can be limited to a study of either of the variants, To be specific and to reduce the 
notation, we will start froaa (1.1) by keeping in mind that the change to incremental. relation- 
ships is realized by adding the sign of the differential to the stress and displacement 
symbols. In addition, for the same reason the analysis is carried out as it applies to the 
problem of a system of blocks t although the majority of the results can also be extended to 
the problem of a matrix with inclusions. Therefore, the problem of finding the stress and 
displacement in a simply connected system of elastic blocks is formulated for given conditions 
on the outer boundary N and known interaction conditions (1.1) on the contacts M. The main 
difficulty is finding the contact values of the stress (or displacement) since, after they 
have been determined, the stress and displacement in each of the blocks is found by well- 
known metho& of solving the fundamental problems for a simply-connected domain /3/. 

2. We will first obtain and investigate the BE? of the necessary type for an arbitrary 
element j. men giving the principal vector f, on its boundary, the Muskhelishvili functions 
cp, and q+, holomorphic in S,* (within Lj) will satisfy the following trel.ationship on Lj: 

Tj+rQ,'+Vj-fjl tELL, (2.1) 

The necessary and sufficient conditions that vJ(t) and $j(t)be the limit values of the 
functions holomorphic in s;, are given by the formulas 

Qj=$ s $2, qj=_L~g (2.2) 

5 LJ 

After manipulation, by using the holomorphism of (9J,t#J and ~1' for their replacement by 

integrals of the form (2.2), we obtain the equation 

lj(t) +kjffj-‘/*fj-~j{T)t.O, tELj 

lj (t) = 4 5 g 3 T?l.j (if) a -&- 
5 

fjd? 
Q 

L f Lj 

(2.3) 

kjo=-& odln~+-BdG) 

3 

For f(t), in addition to the well-known formula /3/ 

i(t)_i(- anr, +W&ds 

we note the consequent dependence, suitable for the numerical solution of problems, under 

conditions of type (1.1) 

f (t) = j (a,, + iad dt 12.4) 

(to is an arbitrary point in the domain considered, and S is the length of an arbitxary arc 

connecting the points t,and t: ). 
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The relationship (2.3) is transformed intoMuskhelishviliequation/3/ if the first 
singular integral is replaced by ei using (2.2). However, such a substitution does not 

conserve equivalence: the eigenfunctions of (2.13) eit, B + Q (a, B? P are real numbers) differ 

from the eigenfunctions of the Muskhelishvili equation studied in /4/. There are no other 
eigenfunctions besides those mentioned, as follows from the uniqueness of the stress field 

for loads given on the boundary. 
The solution of the elasticity theory problem for the boundary condition (2.1) corres- 

ponds to any solution (2.3). Indeed, by introducing functions holomorphic outside of Lj 

@j(Z)=& 1 s? Y(z,=&S 
5*-vj-“Pj’ & zE__ 

T--I , (2.5) 

Lf Lj 

(2.3) can be written in the form 

[@j (2) + ZG) + T$j]e=O (2.6) 

where the subscript e denotes the limit value outside the oontour LJ. According to (2.61, 
CD, (z) and lu,(z) solve the elasticity theory problem for domains exterior to L,when there are 
no loads on its boundary Lt. It therefore follows that @J(Z) = a& +- C,,?FJ((X) = c,, where a, 
is real and C1,Cp are complex constants. However, it follows from (2.5) that as z tends to 
infinity @j(z) and Yj (z) tend to zero: Then ~1 = C1 = Ct = 0 and the functions @J(z) and vj(z) 
equal zero for any z outside LJ. This means that qj(t) and *i(t) =fr - FJ -‘@J’ are limit 
values of functions, analogous to (2.51, that are holomorphic in s,+and satisfy (2.1). 

In passing, important properties of the solution are established for later. If it is 
assumed that the point t is outside the contour LJ (in particular , if it belongs to anyother 
contour L,), then 

Ij(t)p;O, tESj_ (2.71 

Zj(t) + kjqj- ml(f)-0, t ES,- (2.8) 

The last equation asserts the fact that Ott +&' + FJ 50 outside LJ, which resultsfrcm 
@J(z) and Y,(z) being zero outside Lt. Differentiating (2.7) with respect to t, and taking 

the imaginary part, have in addition 

ImEj'(t)=O, tESj (2.9) 

Equation (2.8) means that (2.3) is satisfied not only at points of the contour LJ but 
also at all points exterior to it. The arbitrary function fi outside Lj is here assumed to 
be equal to zero. 

The solution (2.3) is determined to eigenfunction accuracy. In order to avoid them, it 
is sufficient to determine the values of m,(z)and Iln pJ'(2) at an arbitrary internal point zO. 
Assuming cpj (zO) = Im cp'~(z,)= 0, we have 

lj (zo) = 0; Im lj'(zO)= 0, zoE St+ (2.101 

Analogous equations hold for any exterior point by virtue of (2.7) and (2.9). NOW we 
take into account that cgj is expressed quite simply in terms of mechanical quantities /5/ 

Cpj=(+jUj + fj)/(xj -t 1); ujB@j* + iujp 

where pJ is the shear modulus of the j-th block, %J= 3-4~~ for plane strain, and Xj = (3 - 

Y#(~ + 9) for the plane state of stress. Then (2.3), (2.71 and (2.9) take the form 

(2.11) 

hj(t)=O, Imhj'@)==O, tESj_ (2.121 

hj (20) Ei: 0, Im hj' (Zo) t= 0, 20 E Sj+ (2.13) 

Aj(~)_fS [+lj+Uj)&; fj(t)=OwhentESj-) 
Lj ? 

Relation (2.11) is the desired BIE. It corresponds to the following requirements; only 
mechanical quantities occur in it and fictitious loads or displacements do not; it contains 
the displacement only under the integral sign; the BIE is satisfied identically 
for points outside the block if it is satisfied on the boundary. It is extremely desirable 
to obtain the BIE possessing such properties, even for the spatial problem of a block, since 
as is shown in the next section, the summation of such equations for all the blockswillyield 
a final relationship that contains only the force and the difference of the displacements. 
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3. A BIE of the form (2.11) can be written for each of the blocks (j = 1,...,p). Taking 
into account that (2.11) is valid for any j even for points outside the j-th element, 'he 
relations can be added. Then, because of the continuity of the principal vector on the 
boundaries in contact, and taking account of the fact that the boundaries separating the 
elements pass twice in opposite directions (&,, = 
on the total contour L 

-&,,J,an equation is obtained that is given 

I (t) + k (alf -I- AU) - V.& - m (T) = 0, t E L !3.il 

ka=-&~(+dIn~+i3d~), Auz~~+-~- 
L 

x+ + 1 x-+ 1 x+-+-l x-i 1 a2=7+---, a3=___ 
w *+ zir- 

where it is assumed that u- = 0, lip- = 0 on the outer contour. The direction of traversing 
Land the meaning of the plus and minus superscripts are mentioned in Sect.1. 

The solution corresponding to the motion of the blocks as a rigid whole is eliminated by 
using additional conditions that are obtained by summing (2.12) taking (2.13) into account 
for fixed t, within one of the blocks and equal to z,, 

1 (4) = 0, Iml'(z,) = 0 (3.3) 

Substitution of the given values of f on the outer boundary and the values determined by 
(1.1) and (2.4) on the contact blocks ointo (3.1) and (3.3) results in an equation and condi- 
tions in which only the differences between the displacements AU are known. This determines 
the advantage of (3.1) over other forms of integral equations of the plane problem for a 
system of interacting blocks. 

4. Every solution of the elasticity-theory problem under consideration yields functions 
fandu that satisfy relationship (2.11) for each of the blocks. Addition of these equalit- 
ies results in 13.11, i.e., every solution of the problem being studied about blocks satisfies 
the equation (3.1) obtained. The additional conditions (3.3) exclude the arbitrary displace- 
ment of the system as a rigid whole and extxact the unique solution corresponding'to a fixed 
state of stress forgivingthe stresses on the outer boundary. 

The converse assertion that every solution (3.1) under the conditions 13.3) and the rela- 
tion between f and Au given by (1.1) and (2.4) is a solution of the problem fox giving 
stresses on the outer boundary, is proved in a somewhat more complex manner. 

Let Aube a solution of (3.1). Then (1.1) and (2.4) determine f. It is first necessary 
to see that the principal moment of the forces applied to the boundary of any block, calculated 
by means of f, is zero. As is known /3/, this requirement is expressed by the equation 

Re pt=o (/“=l,...,Ff (4.11 

Lj 

To prove (4.1) we write (3.1) in the form obtained by identity transformations 

hi i Aa) + 7 (4 -I- 44 - a$ b 

T---t 
L 

(4.2) 

where theprime denotes the derivative of the function with respect to the argument. 
Integrating (4.2) over the closed contour Lo, changing the order of the integrals on the 

right side, and noting that as+- as=(%~+i)i&. according to (3.2). we obtain 

s 
[(I-- 

x.+1 
ad - AS) dt - (1 - aJ - Au) dlj G L 

Li 
pi s 

Tdt (,=I,...,p) (4.3) 

LI 

The left side of (4.3) is a purely imaginary quantity. Hence, the right side is also 

purely imaginary, i.e., ~gs.(4.1) to be proved are valid. It therefore follows that the func- 

tion f found on solving (3.1) can be treated as the principal vector of the self-equilibrated 
loads acting on any of the contours. 

A solution of the appropriate problems for theseparate blocks exists, as is known. It 

determines the displacement of the blocks u.j to the accuracy of their rigid motion. For each 

of them (2.11) holds. summfnq (2.11) over all the blocks, we obtain an equation analogous to 

the initial equation for the same values of f, but containing the difference Au., not associ- 

ated with the loads by the dependences (1.1) in general. Comparing the difference between the 
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initial and the obtained equations, we arrive at an equation of the form (3.1) for f==O in 

AU - AU,. It is homogeneous, does not contain elastic constants, possesses a negative index 
--c (2~ is the number of odd nodes of the contour L), and has a solution representing the 

difference between the rigid motions of adjacent blocks. Since there are no other solutions 

of the class h, (see /6/) for the homogeneous equation the displacements AU-A+ can differ 
from zero only by the difference between the rigid motions of the blocks. The displacements 
u,j are themselves determined to rigid motion accuracy, i.e., Au, are determined to the 

accuracy of differences in the rigid motions. Hence ~.j can be selected so that AU- Au,=O. 

For such a selection AU= Au, and because Au satisfies (1.11, AU, also satisfies this equa- 
tion. In other words, f and u.1 yield the solution of the elasticity theory problem, which 
it was required to prove. 

Solution (3.1) satisfying (3.31 determines the Muskhelishvili functions ~(xfand (pi(z) 
in an arbitrary j-th element 

Cpj @) = * 1 (z), 2 fz sj+ 
I 

vj (Z)’ $$ [T&-S ftls-az)‘- Aa & + & 5 (ulf + Au)d*?-'] _~rcp;(~), 
I 7-z *--L 

z E sj+ 

L L 

(4.4) 

(4.5) 

The stresses and displacements within the blocks are found by using q&) and VI(~) by 
known formulas /3/. 

5. Under the additional conditions (3.3), Eq.(3.1) is equivalent to the following equa- 
tion without additional conditions , which is more convenient for computations 

Z(t) + k(aj i- Am) -%apf - b(t) -l/*~(~)-(U$~)~~ Z'(z*) = 0, t E L (5.11 

where a is an arbitrary real factor with the dimensions of length. It is introduced in 
order for the dimensions of the last term in (5.1) to agree with the dimensions of the 
other terms. 

Every solution of (3.1) satisfying (3.3) obviously satisfies (5.1) also. Equivalence 
will be proved if the reverse is also established, that every solution (5.1) yields a solution 
of (3.1) under the additional conditions (3.31, and the solution of the initial problem. 

The same computations that were utilized to derive (4.31 are performed for this proof. 
It follows here that for any contour not enclosing the point up, the principal moment 

determined by the functions f satisfying (5.1) equals zero. Since the principal moment of 
the forces applied to Nalso equals zero, it follows that it equals zero even for a contour 
enclosing I~. Then the same reasoning as was utilized in obtaining (4.3) results in the 
conclusion that the last term in (5.1) equals zero, i.e., the second of conditions (3.3) is 
satisfied. It then remains to consider equations analogous to (2.11) for each of the elements. 
They determine the functions aj satisfying the first conditions of (2.12) and (2.13) in 
combination with f. Combining (2.11) and (2.12) and summing over j, we obtain an equation 
of the form (5.11, but for the differences AS in the displacements which cannot satisfy (1.1). 
Subtracting it from (5.1) yields a homogeneous equation whose analysis is completely similar 
to that made above.for (3.1) and results in the deduction that the solution (5.1) Is a solu- 
tion of the initial problem. 

Relation (5.1) is applicable even when giving the displacements on part or on the whole 
of the exterior boundary N. On the sections where the displacements are known, the values of 
f here become unknown, while the last component is eliminated in (5.1). The penultimate 
component is eliminated if the equation is solved directly for the stress by using (2.4), and 
the value of f is determined at an arbitrary point of the outer contour. 

In the case when the domain exterior to Nis filled by an elastic material and the loads 

cro, cuol Uxyo act at infinity,.(5.1) is also applicable with small changes. For t e N the 
component 

I% tar0 + (~~0) t + ‘IS (~3 - ~~0 - z&d rl @b + W(Zb) 

is added on the left side of (5.11, and p- = p,,x- =x0 
by means of (3.21, where ~0, xo 

is considered for determining a,,u,,a, 
are constants corresponding to the outer infinite domain. 

Moreover, ‘/.,(a,, -I- Oyo)z is added in the first part of (4.4) for determining the functions p,(z), 
Vj(z)at points of the outer domain (t = 0), while the term V~(uyo - aso + Zia,,o)z is added on 
the right side of (4.5), where m’(z) in (4.5) is calculated without the mentioned addition in 
(4.4). 

6. Equation (5.1) (or (3.1) with the additional conditions (3.3)) includes a number of 
important special classes of contact and mixed problems. 

Thus, when there are no discontinuities in the displacements (AU =O on M) these rela- 
tionships transform into an equation for f on M for rigidly connected blocks. For an in- 
finite domain and just one block therein, an equation is obtained fox an inclusion rigidly 
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bonded to thematrix. For identical properties of the blocks that are in contact (a, = a3 = I_I 
on M)the relationships become analogous to the equations in AU, being distinguished by the 
fact that there is, however, a term ‘i&f expressible in terms of Au on Moutside the in- 
tegral. 

If tw0 blocks in contact have identical elastic constants (a, = s3 = 0) and there is no 
discontinuity in the displacements on certain sections of their common boundaries (Au = O), 
then the integrals over these sections vanish, and the equations can be considered fox systems 
inwhichthe blocks mentioned can be combined into one block along the part of the boundary on 
which the displacements rem&n continuous. Then the isolated sections of the discontinuities 
areisolatedcracks. fn general, the main vecCor on such sections turns out to be determined, 
apart from unknown constants which are found from the additional conditons for the solution 
to belong to the class H (see /6/j. 

If all the blocks have identical properties and discontinuities occur only along the 
isolated sections, then the equations correspond to a body with isolated slits. For an,in- 
finite domain, Eq.(3.1) is here transformed into the equation obtained in /7/ and used in 

/8,9/. 
In general, any boundary &where the displacements experience a discontinuity (AU # 0) 

can be considered as a crack. It is hence clear that the equations obtained refer not only 
to intersecting and isolated cracks but also describe their generation. They are indeed 
convenient for describing the successive stages of crack growth; hence additional sections 
are attached to the boundary M. 

Different conditions can also be specified on the outer boundary N. Thus, Eq.(3.1) in- 
cludes the case of the fundamental mixed problem and a problem in which the normal (tangential) 
component of the stress and the tangential (normal) component of the displacements are given. 
The equations enable even mere complicated mixed problems to be solved when the conditions on 
Nare described by relationships of the type (1.1). 

The comparative simplicity and applicability of Eq.iS.1) for fairly braod classes of 
problems that are important in practice makes it worth compiling a program for solving it on 
a computer. A program that will assure a solution for 25 blocks interacting along the bound- 
aries is quite realistic. If each isa square, and ten control points are selected an each 
side of the square, then the total number of real unknowns will not exceed 1300 after reduc- 
tion to an algebraic system. 
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